The Three Dimensions of the Next Generation Science Standards (NGSS)

Scientific and Engineering Practices

1. Asking questions (for science) and defining pro	oblems (for engineering)
--	--------------------------

1. Asking questions (for science) and definin	g probleme (for engineering)		
A basic practice of the <i>scientist</i> is the ability to formulate empirically answerable questions about phenomena to establish what is already know, and to determine what questions have yet to be satisfactorily answered.	Engineering begins with a problem that needs to be solved, such as "How can we reduce the nation's dependence on fossil fuels?" or "What can be done to reduce a particular disease?" or "How can we improve the fuel efficiency of automobiles?"		
2. Developing and using models			
<i>Science</i> often involves the construction and use of models and simulations to help develop explanations about natural phenomena.	<i>Engineering</i> makes use of models and simulations to analyze systems to identify flaw that might occur or to test possible solutions to a new problem.		
3. Planning and carrying out investigations			
A major practice of <i>scientists</i> is planning and carrying out systematic scientific investigations that require identifying variables and clarifying what counts as data.	<i>Engineering</i> investigations are conducted to gain data essential for specifying criteria or parameters and to test proposed designs.		
4. Analyzing and interpreting data			
Scientific investigations produce data that must be analyzed to derive meaning. <i>Scientists</i> use a range of tools to identify significant features and patterns in the data.	<i>Engineering</i> investigations include analysis of data collected in the tests of designs. This allows comparison of different solutions and determines how well each meets specific design criteria.		
5. Using mathematics and computational thinking			
In <i>science</i> , mathematics and computation are fundamental tools for representing physical variables and their relationships.	In <i>engineering</i> , mathematical and computational representations of established relationships and principles are an integral part of the design process.		
6. Constructing explanations (for science) and designing solutions (for engineering)			
The goal of science is the construction of theories	The goal of engineering design is a systematic		
that provide explanatory accounts of the material world.	approach to solving engineering problems that is based on scientific knowledge and models of the material world.		
that provide explanatory accounts of the material	approach to solving engineering problems that is based on scientific knowledge and models of the		
that provide explanatory accounts of the material world.	approach to solving engineering problems that is based on scientific knowledge and models of the		
 that provide explanatory accounts of the material world. 7. Engaging in argument from evidence In science, reasoning and argument are essential for clarifying strengths and weaknesses of a line of evidence and for identifying the best explanation for	approach to solving engineering problems that is based on scientific knowledge and models of the material world. In <i>engineering</i> , reasoning and arguments are essential for finding the best solution to a problem. Engineers collaborate with their peers throughout the design process.		

Crosscutting Concepts

1. Patterns

Observed patterns of forms and events guide organization and classification, and they prompt questions about relationships and the factors that influence them.

2. Cause and Effect: Mechanism and Explanation

Events have causes, sometimes simple, sometimes multifaceted. A major activity of science is investigating and explaining causal relationships and the mechanisms by which they are mediated. Such mechanisms can then be tested across given contexts and used to predict and explain new contexts.

3. Scale, Proportion, and Quantity

In considering phenomena, it is critical to recognize what is relevant at different measures of size, time, and energy and to recognize how changes in scale, proportion, or quantity affect a system's structure or performance.

4. Systems and System Models

Defining the system under study – specifying its boundaries and making explicit a model of that system – provides tools for understanding and testing ideas that are applicable throughout science and engineering.

5. Energy and Matter: Flows, Cycles, and Conservation

Tracking fluxes of energy and matter into, out of, and within systems helps one understand the systems' possibilities and limitations.

6. Structure and Function

The way in which an object or living thing is shaped and its substructure determine many of its properties and functions.

7. Stability and Change

For natural and built systems alike, conditions of stability and determinants of rates of change or evolution of the system are critical elements of study.

J. Spiegel, San Diego County Office of Education. Adapted from the National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.

Disciplinary Core Ideas

Physical Sciences	Life Sciences	Earth and Space Science
PS1—MATTER AND ITS INTERACTIONS: How can one	LS1—FROM MOLECULES TO ORGANISMS: STRUCTURES	ESS1— EARTH'S PLACE IN THE UNIVERSE: What is the universe,
explain the structure, properties, and interactions of	AND PROCESSES: How do organisms live, grow, respond to	and what is Earth's place in it?
matter?	their environment, and reproduce?	ESS1.A: THE UNIVERSE AND ITS STARS: What is the universe,
PS1.A: STRUCTURES AND PROPERTIES OF	LS1.A: STRUCTURE AND FUNCTION: How do the	and what goes on in stars?
MATTER: How do particles combine to form the variety	structures of organisms enable life's functions?	ESS1.B: EARTH AND THE SOLAR SYSTEM: What are the
of matter one observes?	LS1.B: GROWTH AND DEVELOPMENT OF ORGANISMS:	predictable patterns caused by Earth's movement in the solar system?
PS1.B: CHEMICAL REACTIONS: How do substances	How do organisms grow and develop?	ESS1.C: THE HISTORY OF PLANET EARTH: How do people
combine or change (react) to make new substances?	LS1.C: ORGANIZATION FOR MATTER AND ENERGY	reconstruct and date events in Earth's planetary history?
How does one characterize and explain these reactions	FLOW IN ORGANISMS: How do organisms obtain and use	ESS2 EADTH'S SYSTEMS: How and why is Earth constantly
and make predictions about them?	the matter and energy they need to live and grow?	ESS2—EARTH'S SYSTEMS: How and why is Earth constantly changing?
PS1.C: NUCLEAR PROCESSES: What forces hold	LS1.D: INFORMATION PROCESSING: How do organisms	ESS2.A: EARTH MATERIALS AND SYSTEMS: How do Earth's
nuclei together and mediate nuclear processes?	detect, process, and use information about the environment?	major systems interact?
PS2—MOTION AND STABILITY: FORCES AND	environment?	ESS2.B: PLATE TECTONICS AND LARGE-SCALE SYSTEM
INTERACTIONS: How can one explain and predict	LS2—ECOSYSTEMS: INTERACTIONS, ENERGY, AND	INTERACTIONS: Why do the continents move, and what causes
interactions between objects and within systems of	DYNAMICS: How and why do organisms interact with their	earthquakes and volcanoes?
objects?	environment and what are the effects of these interactions?	ESS2.C: THE ROLES OF WATER IN EARTH'S SURFACE
PS2.A: FORCES AND MOTION How can one predict an	LS2.A: INTERDEPENDENT RELATIONSHIPS IN	PROCESSES: How do the properties and movements of water shape
object's continued motion, changes in motion, or	ECOSYSTEMS: How do organisms interact with the living	Earth's surface and affect its systems?
stability?	and nonliving environments to obtain matter and energy?	ESS2.D: WEATHER AND CLIMATE: What regulates weather and
PS2.B: TYPES OF INTERACTIONS: What underlying	LS2.B: CYCLES OF MATTER AND ENERGY TRANSFER	climate?
forces explain the variety of interactions observed?	IN ECOSYSTEMS: How do matter and energy move	ESS2.E: BIOGEOLOGY: How do living organisms alter Earth's
PS2.C: STABILITY AND INSTABILITY IN PHYSICAL	through an ecosystem?	processes and structures?
SYSTEMS: Why are some physical systems more stable	LS2.C: ECOSYSTEM DYNAMICS, FUNCTIONING, AND	ESS3—EARTH AND HUMAN ACTIVITY: How do Earth's surface
than others?	RESILIENCE : What happens to ecosystems when the environment changes?	processes and human activities affect each other?
PS3—ENERGY: How is energy transferred and	LS2.D: SOCIAL INTERACTIONS AND GROUP	ESS3.A: NATURAL RESOURCES: How do humans depend on
conserved?	BEHAVIOR: How do organisms interact in groups so as to	Earth's resources?
PS3.A: DEFINITIONS OF ENERGY: What is energy?	benefit individuals?	ESS3.B: NATURAL HAZARDS: How do natural hazards affect
PS3.B: CONSERVATION OF ENERGY AND ENERGY		individuals and societies?
TRANSFER: What is meant by conservation of energy?	LS3—HEREDITY: INHERITANCE AND VARIATION OF	ESS3.C: HUMAN IMPACTS ON EARTH SYSTEMS: How do humans
How is energy transferred between objects or systems?	TRAITS: How are characteristics of one generation passed to	change the planet?
PS3.C: RELATIONSHIP BETWEEN ENERGY AND	the next? How can individuals of the same species and even	ESS3.D: GLOBAL CLIMATE CHANGE: How do people model and
FORCES: How are forces related to energy?	siblings have different characteristics?	predict the effects of human activities on Earth's climate?
PS3.D: ENERGY IN CHEMICAL PROCESSES AND	LS3.A: INHERITANCE OF TRAITS: How are the	Engineering, Technology, and Applications of Science
EVERYDAY LIFE: How do food and fuel provide	characteristics of one generation related to the previous	ETS1: ENGINEERING DESIGN: How do engineers solve problems?
energy? If energy is conserved, why do people say it is produced or used?	generation? LS3.B: VARIATION OF TRAITS: Why do individuals of the	ETS1.A: DEFINING AND DELIMITING AN ENGINEERING
produced of used?	same species vary in how they look, function, and behave?	PROBLEM: What is a design for? What are the criteria and
PS4—WAVES AND THEIR APPLICATIONS IN	Game species vary in new mey look, function, and benave?	constraints of a successful solution?
TECHNOLOGIES FOR INFORMATION TRANSFER:	LS4—BIOLOGICAL EVOLUTION: UNITY AND DIVERSITY:	ETS1.B: DEVELOPING POSSIBLE SOLUTIONS: What is the
How are waves used to transfer energy and information?	How can there be so many similarities among organisms yet	process for developing potential design solutions? ETS1.C: OPTIMIZING THE DESIGN SOLUTION: How can the
PS4.A: WAVE PROPERTIES: What are the	so many different kinds of plants, animals, and	various proposed design solutions be compared and improved?
characteristic properties and behaviors of waves?	microorganisms? How does biodiversity affect humans?	
PS4.B: ELECTROMAGNETIC RADIATION: What is	LS4.A: EVIDENCE OF COMMON ANCESTRY AND	ETS2: LINKS AMONG ENGINEERING, TECHNOLOGY, SCIENCE,
light? How can one explain the varied effects that involve	DIVERSITY : What evidence shows that different species	AND SOCIETY: How are engineering, technology, science, and society
light? What other forms of electromagnetic radiation are	are related?	
there? PS4.C: INFORMATION TECHNOLOGIES AND	LS4.B: NATURAL SELECTION: How does genetic	ETS2.A: INTERDEPENDENCE OF SCIENCE, ENGINEERING, AND
INSTRUMENTATION: How are instruments that	variation among organisms affect survival and reproduction? LS4.C: ADAPTATION: How does genetic variation among	TECHNOLOGY: What are the relationships among science, engineering, and technology?
transmit and detect waves used to extend human	organisms affect survival and reproduction?	ETS2.B: INFLUENCE OF ENGINEERING, TECHNOLOGY, AND
senses?	LS4.D: BIODIVERSITY AND HUMANS: Why do individuals	SCIENCE ON SOCIETY AND THE NATURAL WORLD: How do
	of the same species vary in how they look, function, and	science, engineering, and the technologies that result from them affect
	behave?	the ways in which people live? How do they affect the natural world?

J. Spiegel, San Diego County Office of Education. Adapted from the National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas.